Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Pathol ; 193(6): 680-689, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2305845

RESUMEN

Respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, the current study examined a series of consecutive fatal cases of coronavirus disease 2019 (COVID-19) that came to autopsy at 27 to 51 days after hospital admission. In each patient, a stereotyped bronchiolar-alveolar pattern of lung remodeling was identified with basal epithelial cell hyperplasia, immune activation, and mucinous differentiation. Remodeling regions featured macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This pattern closely resembled findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. Together, these results provide evidence of basal epithelial cell reprogramming in long-term COVID-19 and thereby yield a pathway for explaining and correcting lung dysfunction in this type of disease.


Asunto(s)
COVID-19 , Humanos , Reprogramación Celular , SARS-CoV-2 , Pulmón , Células Epiteliales
2.
Am J Transplant ; 22(7): 1884-1892, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1956680

RESUMEN

The development of donor-specific antibodies (DSA) after lung transplantation is common and results in adverse outcomes. In kidney transplantation, Belatacept has been associated with a lower incidence of DSA, but experience with Belatacept in lung transplantation is limited. We conducted a two-center pilot randomized controlled trial of de novo immunosuppression with Belatacept after lung transplantation to assess the feasibility of conducting a pivotal trial. Twenty-seven participants were randomized to Control (Tacrolimus, Mycophenolate Mofetil, and prednisone, n = 14) or Belatacept-based immunosuppression (Tacrolimus, Belatacept, and prednisone until day 89 followed by Belatacept, Mycophenolate Mofetil, and prednisone, n = 13). All participants were treated with rabbit anti-thymocyte globulin for induction immunosuppression. We permanently stopped randomization and treatment with Belatacept after three participants in the Belatacept arm died compared to none in the Control arm. Subsequently, two additional participants in the Belatacept arm died for a total of five deaths compared to none in the Control arm (log rank p = .016). We did not detect a significant difference in DSA development, acute cellular rejection, or infection between the two groups. We conclude that the investigational regimen used in this study is associated with increased mortality after lung transplantation.


Asunto(s)
Trasplante de Pulmón , Tacrolimus , Abatacept/uso terapéutico , Suero Antilinfocítico/uso terapéutico , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Humanos , Terapia de Inmunosupresión , Inmunosupresores/uso terapéutico , Trasplante de Pulmón/efectos adversos , Ácido Micofenólico/uso terapéutico , Proyectos Piloto , Prednisona
3.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1690085

RESUMEN

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Asunto(s)
Factores de Edad , Envejecimiento/fisiología , Asma/inmunología , COVID-19/inmunología , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Respirovirus/inmunología , SARS-CoV-2/fisiología , Virus Sendai/fisiología , Células Th2/inmunología , Animales , Asma/epidemiología , COVID-19/epidemiología , Citocinas/metabolismo , Humanos , Gripe Humana/epidemiología , Ratones , Ratones Endogámicos C57BL , Estados Unidos/epidemiología
4.
J Immunol ; 207(5): 1229-1238, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1344412

RESUMEN

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or seasonal influenza may lead to respiratory failure requiring intubation and mechanical ventilation. The pathophysiology of this respiratory failure is attributed to local immune dysregulation, but how the immune response to viral infection in the lower airways of the human lung differs between individuals with respiratory failure and those without is not well understood. We used quantitative multiparameter flow cytometry and multiplex cytokine assays to evaluate matched blood and bronchoalveolar lavage (BAL) samples from control human subjects, subjects with symptomatic seasonal influenza who did not have respiratory failure, and subjects with severe seasonal influenza or SARS-CoV-2 infection with respiratory failure. We find that severe cases are associated with an influx of nonclassical monocytes, activated T cells, and plasmablast B cells into the lower airways. Cytokine concentrations were not elevated in the lower airways of moderate influenza patients compared with controls; however, 28 of 35 measured cytokines were significantly elevated in severe influenza, severe SARS-CoV-2 infection, or both. We noted the largest elevations in IL-6, IP-10, MCP-1, and IL-8. IL-1 family cytokines and RANTES were higher in severe influenza infection than severe SARS-CoV-2 infection. Interestingly, only the concentration of IP-10-correlated between blood and BAL during severe infection. Our results demonstrate inflammatory immune dysregulation in the lower airways during severe viral pneumonia that is distinct from lower airway responses seen in human patients with symptomatic, but not severe, illness and suggest that measurement of blood IP-10 concentration may predict this unique dysregulation.


Asunto(s)
COVID-19/inmunología , Virus de la Influenza A/fisiología , Neumonía Viral/inmunología , Sistema Respiratorio/inmunología , SARS-CoV-2/fisiología , Adulto , Anciano , Proteínas Sanguíneas/metabolismo , Líquido del Lavado Bronquioalveolar/inmunología , COVID-19/diagnóstico , Quimiocina CXCL10/metabolismo , Estudios de Cohortes , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Gripe Humana/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Respiratoria , Índice de Severidad de la Enfermedad
5.
Am J Transplant ; 21(9): 3101-3111, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1105194

RESUMEN

The new lung allocation policy has led to an increase in distant donors and consequently enhanced logistical burden of procuring organs. Though early single-center studies noted similar outcomes between same-team transplantation (ST, procuring team from transplanting center) and different-team transplantation (DT, procuring team from different center), the efficacy of DT in the contemporary era remains unclear. In this study, we evaluated the trend of DT, rate of transplanting both donor lungs, 1-year graft survival, and risk of Grade 3 primary graft dysfunction (PGD) using the Scientific Registry of Transplant Recipient (SRTR) database from 2006 to 2018. A total of 21619 patients (DT 2085, 9.7%) with 19837 donors were included. Utilization of DT decreased from 15.9% in 2006 to 8.5% in 2018. Proportions of two-lung donors were similar between the groups, and DT had similar 1-year graft survival as ST for both double (DT, HR 1.108, 95% CI 0.894-1.374) and single lung transplants (DT, HR 1.094, 95% CI 0.931-1.286). Risk of Grade 3 PGD was also similar between ST and DT. Given our results, expanding DT may be a feasible option for improving lung procurement efficiency in the current era, particularly in light of the COVID-19 pandemic.


Asunto(s)
Política de Salud , Trasplante de Pulmón , Asignación de Recursos , Obtención de Tejidos y Órganos , COVID-19 , Supervivencia de Injerto , Humanos , Pulmón , Pandemias , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA